5.4 Practice B

In Exercises 1–3, match the system of linear equations with its graph. Then determine whether the system has *one solution, no solution,* or *infinitely many solutions.*

In Exercises 4–9, solve the system of linear equations.

4.	3x - 3y = 6	5.	12x - 8y = 10	6.	4x - 3y = 16
	-6x + 6y = -12		-6x + 4y = 5		x + y = -3
7.	6x + 9y = -15	8.	-x - 4y = 10	9.	-5x + 2y = 3
	4x + 6y = 10		x + 4y = 10		10x - 4y = -6

In Exercises 10–15, use only the slopes and *y*-intercepts of the graphs of the equations to determine whether the system of linear equations has *one solution*, *no solution*, or *infinitely many solutions*. Explain.

10.	x - 3y = 9	11.	-3x + 8y = 32	12.	2x + 2y = 2
	2x - 3y = 9		6x - 16y = -64		9x + 9y = 9
13.	2x - 4y = -24	14.	y = -3x + 7	15.	5x + y = -3
	3x - 6y = -24		3x + 2y = -6		2y = -10x - 6

- **16.** Write a system of three linear equations in two variables so that two of the equations have infinitely many solutions, but the entire system has one solution.
- **17.** Consider the system of linear equations y = ax + 3 and $y = \frac{1}{a}x 2$.
 - **a.** If possible, find a value of *a* so that the system of linear equations has no solution.
 - **b.** If possible, find a value of *a* so that the system of linear equations has one solution.

5.3 Practice B

In Exercises 1–6, solve the system of linear equations by elimination. Check your solution.

1. 2x + y = 10
5x - y = 112. -3x + 2y = 14
4x - 2y = -163. x + 2y = 7
13 - 5y = x4. 10x - 11 = -3y
5y - 5 = -10x5. 2y - 4 = 3x
2x - 6 = 2y6. 8x + 3y = -5
3y = x + 4

In Exercises 7–12, solve the system of linear equations by elimination. Check your solution.

- 7. 3x 4y = 19
6x + 9y = 218. 4x + 5y = 3
-3x + 2y = 389. 8x + 2y = 22
5x 3y = 3510. 4x + 7y = 1
6x 3y = 1511. 21x 11y = -9
-14x + 8y = 412. 3x + 6y = 6
-2x 9y = -24
- 13. Describe and correct the error in solving for one of the variables in the linear system 4x + 5y = -10 and 2x 4y = 9.

$$\begin{array}{rcl}
X & \text{Step 1} & 4x + 5y = -10 \\
& 2x - 4y = 9 \\
\text{Step 2} & (\text{Multiply by 2.}) \\
& 4x + 5y = -10 \\
& 4x - 8y = 18 \\
& \text{Step 3} & -3y = 8 \\
& y = -\frac{8}{3}
\end{array}$$

In Exercises 14–16, solve the system of linear equations using any method. Explain why you chose the method.

- **14.** x y = 3**15.** $x + 2y = \frac{5}{2}$ **16.** 4x 5y = -3 $x = \frac{1}{3}y + 5$ 3x 5y = 214x + 2y = 9
- 17. You and your friend are making 30 liters of sodium water. You have liters of 10% sodium and your friend has liters of 22% sodium. How many of your liters and how many of your friend's liters should you mix to make 30 liters of 15% sodium?