Basic or "parent" Graph: $\quad y=2^{x}$
Graph by a table of values:

| $x$ | $y=2^{x}$ |
| :--- | :--- |
| -2 |  |
| -1 |  |
| 0 |  |
| 1 |  |
| 2 |  |



B. $y=2^{x}-3$


Contrast to Parent Function:
C. $y=2^{x+3}$


Contrast to Parent Function:



Contrast to Parent Function:


GRAPHING EXPONENTIAL FUNCTIONS $f(x)=b^{x}$
When $b>1 \quad$ When $0<b<1$

## TRANSFORMING EXPONENTIAL FUNCTIONS

Exponential functions, as well as linear, quadratic, and polynomial functions, can all undergo the same types of transformations.

| Type of Transformation | Example <br> Parent function: $f(x)=2^{x}$ | General Condition <br> Parent function: $\boldsymbol{f}(\boldsymbol{x})$ |
| :---: | :---: | :---: |
| Vertical translation (up or down) | $\begin{array}{ll} g(x)=2^{x}+3 & (3 \text { units up }) \\ h(x)=2^{x}-1 & (1 \text { unit down }) \end{array}$ | $\begin{array}{ll} f(x)+\boldsymbol{k} & \begin{array}{l} k>0 \text { up } \\ k<0 \text { down } \end{array} \end{array}$ |
| Horizontal translation (to the left or right) | $\begin{array}{ll} g(x)=2^{(x-4)} & (4 \text { units right }) \\ t(x)=2^{(x+3)} & (3 \text { units left }) \end{array}$ | $\begin{array}{ll} f(x-h) & h>0 \text { right } \\ h<0 \text { left } \end{array}$ <br> [ $h$ is positive if it's right after the minus sign.] |
| Vertical stretch or compression | $\begin{aligned} & g(x)=3(2)^{x} \quad \text { (stretch) } \\ & h(x)=\frac{1}{3}(2)^{x} \quad \text { (compression) } \end{aligned}$ | a $f(x)$ a> 1 stretch compression $0<a<1$ |
| Reflection | $g(x)=-2^{x}$ | over $x$-axis <br> opposite of |

## Use the chart to answer the questions below.

1. How does the graph of $f(x)=2.7^{x}$ compare to the graph of $g(x)=2.7^{x}-4$ ?
2. How does the graph of $f(x)=2.7^{x}$ compare to the graph of $g(x)=2.7^{(x-5)}$ ?
