6 Chapter 6 Cumulative Review (continued)

Determine whether the sequence is arithmetic. If so, find the common difference.

Graph the function. Describe the domain and range.

25.
$$y = \begin{cases} 2x + 1, & \text{if } x < -1 \\ 0, & \text{if } x \ge -1 \end{cases}$$
 26. $y = \begin{cases} x, & \text{if } x < 3 \\ \frac{2}{3}x - 4, & \text{if } x > 3 \end{cases}$

Solve the system of linear equations by graphing, substitution, or elimination.

27.
$$y = -\frac{1}{2}x - 2$$

 $y = -\frac{3}{2}x + 2$
28. $8x + 14y = 4$
 $-6x - 7y = -10$
29. $y = 5x - 7$
 $-3x - 2y = -12$

30. The sum of the digits of a two-digit number is 7. Reversing its digits increases the number by 9. What is the number?

Solve the equation by graphing. Check your solution(s).

31.
$$9x - 4 = 2 - 3x$$
 32. $|4 - x| = |-6 + x|$

Graph the inequality.

- **33.** $y < \frac{1}{5}x + 2$ **34.** $y \ge -x + 3$ **35.** $2x 2y \le -2$
- **36.** You have \$500 in a savings account at the beginning of the summer. You want to have at least \$200 by the end of the summer. You withdraw \$25 each week.
 - **a.** Write an inequality that represents this situation.
 - **b.** For how many weeks can you withdraw money?

Graph the system of linear inequalities.

37. $x \le -3$
 $y < \frac{5}{3}x + 2$ **38.** $y \le \frac{1}{2}x + 2$
y < -2x - 3**39.** 4x + y < 2
y > -2

Cha	6 Cumu	lative R	eview (contin	nued)	
Evalu	ate the expression				
40.	2 ⁰	41. $(-3)^0$	42.	3 ⁻⁴	43. $\frac{(-3)^2}{-8^0}$
Simp	lify the expression.	Write your	answer using or	۱ly positive exp	oonents.
44.	w^{-3}	45.	h^0	46.	$12x^{-5}y^{0}$
47.	$\frac{2^{-4}x^2}{z^0}$	48.	$\frac{r^{-7}}{10^{-2}z^{-5}}$	49.	$\frac{17x^{-1}y^{-10}}{7^{-2}z^0}$
Rewr	ite the expression i	n rational ex	xponent form.		
50.	$\sqrt{8}$	51.	$\sqrt[7]{18}$	52.	$\sqrt[3]{3}$
Rewr	ite the expression i	n radical for	rm.		
53.	24 ^{1/4}	54.	37 ^{1/10}	55.	140 ^{1/2}
Evalu	ate the expression				
56.	∛729	57.	∜625	58.	√-32
59.	512 ^{2/3}	60.	(-256) ^{5/8}	61.	1024 ^{6/5}
		. 1/n			

Use the formula $r = \left(\frac{F}{P}\right)^{1/n} - 1$ to find the annual inflation rate to the nearest

tenth of a percent.

- 62. A house increases in value from \$30,000 to \$120,000 over a period of 40 years.
- **63.** The cost of a quart of strawberries increases from \$0.99 to \$3.49 over a period of 25 years.

Determine whether the table represents a *linear* or an *exponential* function.

64.	x	1	2	3	4
	у	1	3	9	27

65.	x	-4	0	4	8
	y	9	2	-5	-12

6 Chapter 6 Cumulative Review (continued)

Evaluate the function for the given value of *x*.

66.
$$y = 4^x$$
; $x = -1$ **67.** $y = -3(7)^x$; $x = 4$ **68.** $f(x) = \frac{1}{4}(2)^x$; $x = -3$

Identify the initial amount *a* and the rate of growth *r* (as a percent) of the exponential function. Evaluate the function when t = 4. Round your answer to the nearest tenth.

- **69.** $y = 250(1 + 0.05)^t$ **70.** $y = 5(1 + 0.2)^t$
- **71.** $f(t) = 1000(1.002)^t$ **72.** $p(t) = 3^t$

Write a function that represents the situation.

- **73.** A \$20,000 car decreases in value by 15% every year.
- 74. A newborn baby weighs 8 pounds and increases its weight by 5% every week.
- **75.** A company profit of \$1,000,000 decreases by 50% every day.

Solve the equation. Check your solution.

76. $3^{6x} = 3^{18}$ **77.** $5^{2x+11} = 5^{-7}$ **78.** $(25)^{3x+6} = (125)^{4x}$

Determine whether the sequence is *arithmetic*, *geometric*, or *neither*.

79. 180, 90, 45, ... **80.** 1, 4, 16, 64, ... **81.** 17, 23, 29, 35, ...

Write the next three terms of the geometric sequence.

82. 486, 162, 54, ... **83.** 6, 12, 24, 48, ... **84.** 36, 18, 9, $\frac{9}{2}$, ...

Write the first six terms of the sequence.

- **85.** $a_1 = 1, a_n = a_{n-1} + 3$ **86.** $a_1 = 3, a_n = 2a_{n-1}$
- **87.** Write a recursive rule for the number of bacteria at time *t*, if after 1 minute, there is 1 bacterium. After 2 minutes, there are 3 bacteria. After 3 minutes, there are 9 bacteria. After 4 minutes, there are 27 bacteria.