Mixed Review—Chapters 1-12

Simplify. Assume that no denominator equals zero. Each variable represents a positive real number.

1.
$$(3t-2)(2t^2+5t+4)$$

2.
$$\sqrt{x^2 + 10x + 25}$$

3.
$$(4x^2y)^3(-x^5y)^2$$

5.
$$\frac{b-3}{b+1} - \frac{8}{b}$$

6.
$$\sqrt{\frac{48}{147}}$$

7.
$$\sqrt{180}$$

8.
$$\sqrt{144s^2t^5}$$

9.
$$\sqrt{175}$$

10.
$$\sqrt{\frac{36x^7}{25x}}$$

Factor completely, if possible. If the expression is not factorable, write "prime."

13.
$$3x^2 + x - 2$$

14.
$$y^2 - 5y - 40$$

15.
$$4n^2 + 24n + 9$$

16.
$$x^2 - 18x + 36$$

17.
$$-48y^2 + 29y + 15$$

18.
$$3c^2 - 5cd - 12d^2$$

21. Express
$$\frac{x-1}{3}$$
, $\frac{x}{4}$, and $\frac{1}{2}$ with their LCD.

Solve and graph the solution set.

22.
$$-2x < 6$$

23.
$$-3 \le x + 1 \le 1$$

24.
$$3z - 2 > 7$$
 or $2z + 1 < 5$

25.
$$|t-5| < 1$$

Mixed Review—Chapters 1-12 (continued)

- 27. The hypotenuse of a right triangle and one leg have lengths of 12 and 7 respectively.

 Find the length of the other leg to the nearest tenth.
- 28. The numerator of a fraction is 10 less than the denominator. If 4 is added to each, the value of the resulting fraction is $\frac{3}{5}$. Find the original fraction.

Solve each equation or inequality.

29.
$$\frac{4}{x+6} = \frac{8}{3x+5}$$

30.
$$\sqrt{\frac{3x-1}{2}} = 4$$

31.
$$\sqrt{y} = \frac{2}{3}$$

32.
$$\frac{1}{3} < 2 - \frac{3}{4}y$$

33.
$$5t^2 - 80 = 0$$

$$34. \ 3t + 2 = 2t - 1$$

35.
$$3t + 2 < 5t - 3$$

36.
$$(x + 3)^2 = 16$$

Solve each system.

37.
$$x + y = 7$$

 $2x + 3y = 4$

38.
$$5x - 4y = 9$$

 $3x + 2y = 1$

40. The sum of two consecutive even integers is less than 84. Find the pair with the greatest sum.

Use the discriminant to determine how many real-number roots the equation has. Do not solve the equation.

41.
$$x^2 - 3x + 5 = 0$$

42.
$$4k^2 - 12k + 9 = 0$$

43. When 3 times a number is increased by 7, the square root of the result is 7. Find the number.

48. Graph the solution set of this system.

$$\begin{aligned}
 x + y &\ge 2 \\
 x - y &\ge 1
 \end{aligned}$$

Mixed Review—Chapters 1-12 (continued)

Express in simplest form.

49.
$$(5\sqrt{7} - 2\sqrt{5})(4\sqrt{7} + 3\sqrt{5})$$
 ______ 50. $3\sqrt{3}(4\sqrt{27} - 5\sqrt{12})$ _____

50.
$$3\sqrt{3}(4\sqrt{27}-5\sqrt{12})$$

51.
$$(2\sqrt{5} - 5\sqrt{2})^2$$

52.
$$\sqrt{\frac{2}{3}} \cdot \sqrt{\frac{8}{12}}$$

53.
$$6\sqrt{48} - 5\sqrt{18}$$

54.
$$\sqrt{3}\sqrt{15}$$

55. Write an equation in standard form for the line with slope
$$-1$$
 that passes through $(-6, 4)$.

Solve

Leave irrational answers in simplest radical form.

56.
$$3t^2 + 5t + 2 = 0$$

57.
$$z^2 - 7z + 4 = 0$$

59. Find the equation of the line with given values
$$f(-3)=5$$
 and $f(-4)=7$.

60. Find the greatest common monomial factor:
$$18a^3b^4c^2$$
, $54a^2bc^5$, $27a^7x^2c^3$

61. Evaluate:
$$\frac{3^{-2} \cdot 3^5}{3^{-3}}$$